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Scientific Progress

In the past, we have experimentally demonstrated different types of novel sub-wavelength resonator designs for 
room/cryogenic temperature lasing action, such as optically pumped metallo-dielectric laser.  We choose to adapt our current 
laser architecture as a starting point for this project. In this architecture, the gain medium is wrapped with a combination of a 
dielectric shield and a metal layer. By optimizing the thickness of the low index shield between the metal and semiconductor, 
the gain threshold of the laser can be substantially reduced such that it is amenable to room temperature operation. In order to 
exploit the QCSE effect, we have thus adapted the previous architecture by implementing electrical contacts, which enable the 
generation of an electric field through the nanolaser when a voltage is applied (Fig1). In this new design, a conductive 
electrode, made by Indium Tin Oxide (ITO), constitutes an additional layer deposited on the dielectric shield layer (SiO2). The 
conductive layer is optically transparent both at the pump and laser emission wavelengths, respectively at 1064 nm and around 
1550 nm.


This new design will tend to modify the properties of the optical modes supported by the resonator. With this SiO2 dielectric 
layer at the bottom, the resonator will be not optimized anymore in terms of quality factor and threshold gain. We then started a 
new simulation campaign in order to optimize this structure at room temperature. Figure 2 shows the fundamental mode 
supported by the nanocavity. In figure 3(a), we have represented the evolution of the quality factor and the threshold gain as 
function of the thickness of SiO2 bottom-layer while keeping constant all the other parameters. This result shows that the 
threshold gain does not change for a SiO2 layer thickness below ~250nm while the quality factor remains at the same value 
~1500. By keeping the thickness of the SiO2 bottom-layer at 100 nm, the ITO layer thickness is varied from 100 to 300 nm 
(Fig3(b)). We observe that this layer should not exceed 200nm-thick in order to keep a reasonable value of threshold gain of 
~100cm-1. These results reinforces our idea that this new architecture would operate as those we have demonstrated in the 
past. 


Besides, we have theoretically investigated the effect of the electric field applied across the gain medium on the tunability and, 
how this field is going to affect the gain.  In the QCSE, an external electric field induces a energy shift of  the quantum well 
levels leading to a shift of  the emission wavelength. We have thus estimated this wavelength shift as shown in Fig4. This result 
shows that it would be possible to tune and switch the emitted wavelength within ~2 nm range.  Moreover, when the external 
electric field, applied along the quantum well growth direction, drifts electrons and holes toward opposite directions, reducing 
their wave functions overlap and thus resulting in slower absorption rates. This leads to a reduction of the gain as the strength 
of the electric field is increased. However, the ratio between the gain for zero-electric field and non-zero-electric field, shows a 
reduction of ~5% for relatively small applied electric field.  


In addition, we have also started fabricating the proposed device shown in Fig. 1. The device is fabricated on a wafer consisted 
of 300nm InGaAsP multiple quantum wells (MQWs) epitaxially grown on top of an InP substrate. The MQW gain region involves 
nine layers of 10nm In0.564Ga0.436As0.933P0.067 well embedded in ten layers of 20nm In0.737Ga0.263As0.569P0.431 
barrier. Electron beam lithography were performed to pattern the wafer with circles of various radii by using a negative tone 
resist named hydrogen silsesquioxane (HSQ). The patterned wafer was processed with reactive ion etching (RIE) to create 
circular pillars of approximately 500nm height (Fig. 5a). Aluminum oxide (100nm) was deposited on top of the etched wafer 
through atomic layer deposition (ALD) to reduce the field-metal overlap and therefore, the metal cavity loss (Fig. 5b). 
Subsequently, a 300nm layer of silver along with a 20nm gold capping layer were sputtered onto the sample to confine the 
electromagnetic field (Fig. 5c). Finally, the devices were attached to a silicon wafer with silver epoxy and the InP substrate was 
chemically etched away with hydrochloride acid to create an air hole at the bottom of the cavity. We used aluminum oxide 
instead of the previously proposed silicon dioxide because adhesion between silicon dioxide and silver is poor. The gain 
medium slips out along with the oxide layer during wet etching of the InP substrate when adhesion between the oxide layer and 
silver is poor. On the other hand, adhesion between aluminum oxide and silver is good such that the MQW gain is preserved 
after substrate removal. The next step is to deposit an oxide layer and ITO on top of the gain, which is currently in progress.

Technology Transfer



 

Fig. 1. Schematic of the proposed tunable optically pumped nanolaser. 

 

 

  

Fig. 2. (a) side (b) top views of the fundamental mode supported by the nanocavity. 
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Fig. 3. (a) Evolution of the quality factor and the threshold gain versus SiO2 bottom-layer thickness. The 

ITO layer thickness is 100nm. (a) Evolution of the quality factor and the threshold gain versus ITO -layer 

thickness. The SiO2 layer thickness is 100nm. 
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Fig. 4. Evolution of the emission wavelength and the normalized gain with respect of the external electric 

field. 

 

 
Fig. 5. Scanning electron microscope images of the proposed device after (a) dry etching, (b) aluminum 

oxide deposition and (c) silver deposition. 




